全国亚洲最大色图视频网,av中文字幕一区二区三区四区,蜜桃视频在线观看国产,国产变态另类在线视频,69国产精品视频免费播放,免费在线观看视频完整,欧美 日韩 国产 独家 精品,人人插人人搞人人精品,91高清成人在线视频

歡迎來到吉林省華博科技工業(yè)有限公司網(wǎng)站!
咨詢熱線

13009129951

當(dāng)前位置:首頁  >  技術(shù)文章  >  電壓擊穿試驗儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

電壓擊穿試驗儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

更新時間:2009-03-19  |  點擊率:9034

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗機產(chǎn)品網(wǎng):http://www.huayangyq.com

 

華洋儀器展覽網(wǎng):http://www.huayangyq.net

 

華洋儀器化工網(wǎng):http://www.wodeshejimeng.com

 

華洋儀器百業(yè)網(wǎng):http://www.jlhyyq.cn

 

 

日本六十路人妻熟女| 射手中文网视频在线观看| 亚洲精品久久久久久首页| 亚洲不卡一区三区| 98人妻精品一区二区| 自拍偷拍亚洲精品| 亚洲熟女人妻丝袜| 人妻久久久久一区二区三区| 久久免费精品国产2020| 亚洲欧美另类国产人妻| 三级黄色大片久久久久久| 亚洲丝袜av一区| 欧美成人一级大片| 人妻性奴隶精品一区91| 美女av性感视频| 欧美在线视频欧美在线视频| 黄色免费在线播放网站| 尤物av蜜臀av| 亚洲美女骚货av| 来个网站午夜激情| 国产日日躁夜夜躁| 国产在线精品毛片| 120分钟激情视频| 亚洲日本成人中文字幕| 亚洲日本一区二区三区久久久| 99热网址在线观看一区| 中文字幕av资源在线观看| 精品视频一区二区二区三区 | 夫上司人妻秘书OL中文有码| 一区二区三区四区中文字幕| 久久国产精品亚洲精品99| 亚洲熟女综合色区一区二区三区| 强d无乱码中文字幕免费| 一级特黄在线观看| 一区二区三区四区亚洲区| 在线av资源网站| 免费精产国品一二三| 麻豆精品国产传媒av绿帽社| 色哟哟丨小丨国产专区| 欧美精品视频不卡| h动漫精品一区二区三区免费| 成人 在线 视频| 亚洲欧美另类卡通| 亚洲久久久久久久蜜桃视频| 亚洲超碰福利在线| haose我爱av| 国产人久久久伊人av| 色偷偷男人天堂亚洲天堂| 在线中国亚洲欧美激情片| 卡通动漫400页亚洲片影音先| 成人午夜av无在线毛片| 午夜在线观看视频免费| 在线观看国产精选| 亚洲乱码一区二区视频| 国产精品日韩欧美国产| 一区二区三区四区中文字幕| 亚洲中文字幕人妻在线| 蜜桃视频综合一区| 久久久99久久久国产| 天美传媒有限公司官网首页| 一区二区三区中文字幕在线| 国产免费在线视频播放| 夏洛特的烦恼在线播放高清| 欧美一区综合视频| 成人精品视频视频| 中文字幕av资源在线观看| 欧美 亚洲 丝袜另类| 日本高清高清高色| 蜜桃在线播放观看| 日本一区二区精品在线| 最近最新中文字幕日a精品人妻| 日本一区视频二区| 色尼古日本人与兽| 99精品高清免费在线视频| 两个人的视频全免费观看| 丰满少妇午夜福利视频| 三级日本一区二区三区| 人妻 精品一区二区三区| 国产超级va在线观看视频| 五月激情综合婷婷网| 女同性恋黄色av| 中文字幕中文字幕在线| 人妻一区二区三区18| 大屁股骚逼操比视频软件| 欧美激情一区二区三区国产| 999国产精品亚洲| 91豆花 私人 在线 | 麻豆亚洲一区麻豆| 欧美日韩国产视频一区二区| 美女被人操出白浆| 亚洲欧美自拍第页| 四虎884aa成人精品最新| 亚洲情色精品av| 美女黑丝国产在线观看| 精品高潮久久久久9999| julia京香中文字幕在线| 国产电视剧在线观看高清资源| 网友自拍 在线视频| 日本不卡在线免费| 清纯唯美亚洲另类| 精品人妻在线不人妻| 风流老熟女一区二区三区av| 欧美日韩精品综合国产| 日日本大香蕉日日本大香蕉| 欧美日本精品免费观看| 亚洲av欧av日韩av| 中文字幕av资源在线观看| 亚洲成人免费中文字幕| 亚洲国产麻豆一区| 97免费视频资源总站| 粉嫩高清一区二区三区| 日韩熟女在线视频| 99久久精品国产亚洲av| 麻豆精品视频网站在线观看| 伊人网在线观看免费视频| 大肉大捧一进一出视频出呀| 午夜精品久久久久久久免费| 91久久综合精品久久久综合| h动漫精品一区二区三区免费| 大鸡巴插小逼里面爽的呻吟视频| 人妻熟妇免费视频| 日日躁狠狠躁av| 久久综合狠狠综合| 体内射精sex合集| 97成人公开视频| 人妻少妇免费视视频一区二区 | 欧美日本高清视频99| 97超碰在线观看播放| 日本不卡免费视频′| 日本女人被男人用力插骚逼的大 | 一道久dvd在线观看| 国内视频在线播放不卡| 美女av性感视频| 日本一区二区三区四区网址| 懂色av蜜臀性色av| 狂撞无码人妻在线播放视频| 啪啪啪在线播放网站| 亚洲 欧美 制服 丝袜 91| 国产精品小视频啊啊啊| 在线中国亚洲欧美激情片| 亚洲精品在线观看aa| 欧美vieox另类极品| 两个人的视频全免费观看| 亚洲蜜桃免费在线| 91污污污在线观看下载| 亚洲国产伊人久久| 精品亚洲偷拍自拍| 99久久久久久久久婷婷精品国产| 97超pen在线视频人妻| 精品一区二区久久久久久久| 日韩美av一区二区三区| 国产日产欧产美韩系列三级| 在线观看日韩论理| 在线av资源网站| 男女真人操逼视频在线观看| 国产伦奸在线播放免费| 国产成人高清视频免费| 人妻熟女免费在线视频| 国产亚洲天堂自拍| 国产精品久久精品视频| 体内射精sex合集| 最近最新中文字幕日a精品人妻| 亚洲精品在线黄色av| 中文字幕日本αv| 日韩美女上厕所被偷拍| 十大黄色禁看软件| 热99精品视频在线播放| 国产日韩欧美懂色| 成人在线视频播放一区| 顶级黄色片久久免费看| 亚洲欧美国产色逼视频| 成人午夜av无在线毛片| 偷拍激情文学欧美| av中文字幕在线观看一区| 极品美女福利视频在线观看| 日韩黄片免费点击就看| 老鸭窝在线视频观看网站| 中国丰满人妻av| 肏死我的小骚逼视频| 扒开女子下面让男人桶的视频| 最近的中文字幕在线看| yellow中文字幕网91在线| 成人国产高清av| 亚洲天天狠狠操夜夜狠狠操| 亚洲乱码中文字幕一区l| 日本女人被男人用力插骚逼的大| 极品大奶子福利在线观看| 亚洲av黄色在线播放| 亚洲欧美卡一卡二| 色哟哟丨小丨国产专区| 国产偷拍自拍合集| 国产精品久久a|| 91free香蕉久久蜜桃| 亚洲人妻一区二区91九色| 在线精品国自产拍| 亚洲免费黄色av网站| 亚洲精品国产欧美| 少妇床戏av蜜桃| 国产综合在线视频免费看| 中文字幕av九区| 青青青青青青青视频在线| 99久久无码国产孕妇精品| 亚洲视频欧美另类| 伊人青青久免费在线观看| 日本一二三区不卡ww| 79久久久久久久69| 国产又猛又粗又硬又黄视频 | 久久免费精品国产72精品剧情| 高清av有码在线| 轮奸在线一区一区三区| av熟女乱入一区二区| 成人亚洲AV一片内射在线观看| 中文字幕av九区| 桥本有菜av精品免费播放 | 亚洲视频一区自拍| av黄色片在线播放| 最新日本一区二区三区| 亚洲欧美另类在线中文字幕| 全国亚洲最大色图视频网| 成年在线免费看视频| 精品人妻aⅴ一区二区| 午夜一区二区三区四区0| 体内射精sex合集| 91一区二区中文字幕| 国产日韩欧美911在线观看| 久久精品国产一区二区三区不卡| 国产精品九九精品久久免费| 日韩av字幕在线| 欧美一二三在线视频| av天堂亚洲首页| 国模在线一区二区三区| 性熟妇日本五十路xxxx| 日本少妇xxx视频| 18禁止观看强奷网叫床声| 偷拍色图丝袜美腿日韩| 亚洲无久久久久久久久| 福利视频诱惑导航| 亚洲激情人妻日韩欧美| 国产一区熟女在线视频| av黄色片在线播放| 人妻久久精品夜夜爽一区二区| 国产日产一区二区三区久久久久久| 国产自拍小视频在线免费观看| 大鸡巴强奸骚逼骚叫乱伦视频| 日本熟妇视频在线| 欧美日韩午夜视频在线观看| 国产精品欧美一级免费| 中文字幕国产视频在线播放| 亚洲欧美另类亚洲欧美| 国产成a免费在线播放| 日本一区二区三区四区网址| 亚洲制服丝袜在线诱惑一区| 亚洲男女一区二区三区| 99久久亚洲精品日本无| 人妻少妇熟女系列中文字幕| 亚洲欧美国产色逼视频| 三级视频无码在线观看| 中文字幕亚洲精品人妻日| 97超pen在线视频人妻| 亚洲国产中文字幕蜜臀| 久久艹日中文字幕| 偷拍激情文学欧美| 午夜精品偷拍视频| 丝袜人妻熟女网站| 九九热在线观看视频99| 欧美国产视频自拍| 苏联大鸡巴插在女人阴道里| 999国产精品亚洲| 亚洲情色精品av| 亚洲视频一区中文字幕| 久久免费精品国产72精品剧情| 欧美性感比基尼视频| 成人 中文字幕在线| 自拍偷拍在线欧美| 精品久久久久久久99蜜桃| 久久国产精品亚洲精品99| 国语版三级黄色片| 清纯唯美亚洲另类| 女人av一区二区三区| 亚洲天堂av五月婷婷| 国产av忽忽那年校园事| 青青久草视频在线99| 中文字幕乱码一区二区欧美| 国产精品欧美一级免费| 欧美日韩国产精品爽爽| 日韩一卡二卡无人区在线免费观看 | 美女被人操出白浆| 污污在线一区二区| 青青草原 华人在线| 在线视频日本综合| 自拍偷拍激情在线| 免费人妻在线视频观看| 亚洲欧洲无码一区二区三区| 人妻互换一二三视频| 免费观看日韩毛片| 一区二区三区免费黄片| 欧美精品久久99久久| 天堂av在线成人免费| 婷婷午夜精品久久久久久久久久 | 在线欧美亚洲一区| 天天色天天碰天天干| 最新地址亚洲天堂| 毛片av在线网址| 中国少妇日本少妇| 美女视频美女视频网站| 人妻互换一二三视频| 日本人体艺术在线| 成人在线视频播放一区| 亚洲欧美国产色逼视频| 欧美一级二级三级黄片| 在线 视频 日韩| 欧美一区二区三区高清不卡tv| 美女嫩模福利在线| 亚洲精品成a在线观看| 93精品视频在线| 日本六十路人妻熟女| 日韩中文字幕熟妇人妻| 午夜精品久久久久久久免费| 亚洲不卡一区三区| 日本中文高清字幕网站| 亚洲欧美中文国产av2019| 国产无遮挡又爽又黄网站| 清纯唯美亚洲另类| 日本aⅴ毛片成人| 日韩人妻三区视频| 色悠久久久久久久综合网| 欧美在线观看一区二区三区国产| 亚洲精品综合人妻av| 亚洲ww在线观看| 亚洲欧美综合7777色婷婷| 91福利电影在线观看| 欧美午夜一级欧美精品| 国产亚洲天堂欧美| 久久夜色精品国产亚洲AV动搜索| 日本精品一区二区三区试看| 国产av有码中文| 逼喷水在线免费观看2| 日本不卡在线免费| 亚洲精品视频国产精品视频| 日韩美女上厕所被偷拍| 黄色国产精品免费推荐| 国产精品不卡无码AV蜜芽| 欧美成人一级大片| 国产av成年精品| 成人 在线 视频| 任我看视频在线观看| 中文字幕亚洲国产精品| 蜜桃视频午夜精品| 大屁股骚逼操比视频软件| 人妻一区二区三区18| 国产综合在线视频免费看| 精品高潮久久久久9999| 少妇久久免费精品| 在线播放日韩一区| 欧美黑人精品在线免费观看视频| 亚洲精品在线观看aa| 日韩熟女一区二区免费| 天天爱天天看天天摸| 精品精品免费免费免费 | 任我看视频在线观看| 夫上司人妻秘书OL中文有码| 男人天堂网站亚洲| 人妻互换一二三视频| 黄色成人免费看片| 91亚洲一区二区三区极品| 亚洲欧美日韩综合人妻| 亚洲国产高清国产| av天堂资源最新版中文版| 国产无遮挡裸体免费久久| 天美传媒有限公司官网首页| 欧美日韩伦理三级av| 成人做爰毛片免费一| 精品亚洲偷拍自拍| 日日本大香蕉日日本大香蕉| 亚洲欧美视频一区二区三区| 视频一区视频二区视频三区四区| 三级伦理一区二区三区| 欧美手机在线不卡视频| 人妻一区二区三区18| 国产日日躁夜夜躁| 来个一级黄片看看| 成人h网站秘在线观看| 三级视频无码在线观看| 中国丰满人妻av| 视频一区二区三区欧美国产| 亚州综合一区二区三区| 青青草原在线精品视频免费| 亚洲免费av在线观看一区| 日韩成人在线另类调教性奴视频 | 午夜国产亚洲精品| 中文字幕在线观看视频中文| 93精品视频在线| 一级av电影在线播放| 亚洲自拍卡1卡2卡3卡4| 女人摸男人的丁丁视频| 青青青青青青青视频在线| 日本av在线视频| 黑人无码AV黑人天堂无码AV| 久草青青在线播放视频| 黄色av亚洲黄色av| 最近的中文字幕在线看| 福利精品视频在线观看| 黄片在线观看日本| 国产AV又粗又大果冻传媒| 人妻久久搭讪中出电影| 欧美美女视频久久| 婷婷久久视频在线播放| 卡通动漫400页亚洲片影音先| 国产精子久久久久久久| 风流老熟女一区二区三区av| 午夜国产精品自取自拍| 日本不卡一区二区高清视频| 91污污污在线观看下载| 人妻久久搭讪中出电影| 亚洲欧美最大色精品网站免费观看| 青青草福利视频在线观看| 中文字幕日本αv| 永久免费视频网站在线| 东京干手机福利视频| 欧美大香蕉免费在线观看| 口爆颜射视频免费| 成人午夜嘿嘿视频| 亚洲精品视频自拍成人| 日本av在线视频| 亚洲欧美卡一卡二| av在线 中文字幕 丝袜| 国产av日韩av一区| 国产一区熟女在线视频| 87欧美福利在线视频| 日韩中文高清在线| 亚洲综合av网自拍| 久久久乱码精品一区二区三区| 人妻少妇久久久久久97人妻| 国产91单男3p在线观看| 五月激情综合婷婷网| 99九九久久久久精品| 国模精品久久久久性色av| 亚洲中文字幕一区二区视频| 国产欧美在线观看不卡一| 国产日产欧产美韩系列三级| 自拍视频在线观看1久网| 超超碰超碰在线观看| 欧美精品久久99久久| 在线成人资源播放| 久久五十路老妇丰满人妻精品| 国产在线视频中文字幕| 最新日本一区二区三区| 中文字幕熟女人妻丝袜丝av| xxxx日本熟妇| 91调教免费视频| 超碰在线97中文| 小泽玛利亚二区三区在线| 在线 视频 日韩| 91久久综合精品久久久综合| 出轨人妻少妇500视频| 精彩视频午夜在线免费观看| 美女被草在线网站| 自拍偷拍激情在线| 国产精品99久久99精| 蜜臀av网站中文一区| 亚洲av乱码国产一区二区| 久久久噜呀噜噜久久免| 日韩成人av一区二区| 91调教免费视频| 国产三级内射在线| 伊人网在线观看免费视频| 久久国产精品视频播放| 97成人公开视频| av解说免费在线播放网站| 91free香蕉久久蜜桃| 欧美日韩伦理三级av| 人与禽动zoz0性伦a| 日韩av在线综合| 免费软件视频聊天| 国产精品私密裸模视频| 亚洲伦理一区二区在线观看| 日韩国产精品专区一区性色 | ae老司机精品福利视频| 青青草原 华人在线| 久久成人三级一区二区三区| 中文字幕久久人妻网站| 男生操女生的b在线观看| 99九九久久久久精品| 福利视频广场一区二区| 国产美女在线观看免费观看| 91福利电影在线观看| 极品av黑丝美女插插插入| 日本一区视频二区| 美女直播三级视频| 120分钟激情视频| 人妻少妇一区二区| 日本女人被男人用力插骚逼的大| 夜夜操夜夜夜夜夜爽| 欧美精品久久99久久| haose我爱av| 在线免费观看亚洲中文字幕| 在线视频成人一区二区| 亚洲av欧av日韩av| 在线中国亚洲欧美激情片| 最近的中文字幕在线看| 在线麻豆黄色观看| 国产电视剧在线观看高清资源| 精品视频一区二区二区三区| 亚洲国产精品青青网| 婷婷午夜精品久久久久久久久久| 老熟女五十路乱子中出交尾一区| 第一精品福利导航网| 亚洲精品在线观看aa| 在线欧美亚洲一区| 久久免费精品国产2020| 欧美 亚洲 丝袜另类| 93精品视频在线| 天天爱天天看天天摸| 免费在线观看的av毛片的网站| 国产亚洲天堂欧美| 欧美一区二区三区在线激情| 56av国产精品久久久久久久| 中文字幕av资源在线观看| 三级三级久久三级三级| 97超碰在线观看播放| 亚洲精品在线观看aa| 亚洲视频一区中文字幕| 亚洲熟女综合色一区二区三区四区| 少妇久久免费精品| 99精品视频maifei| 99视频精品免费播放| 狂野少女免费完整版中文| 成人小视频免费在线观看| 久久综合狠狠综合| 国产啊啊在线播放| 96久久久久国产精品| 九九熟女人妻视频66| 日本不卡在线免费| 巨乳美女av在线| 黄色国产精品免费推荐| 中文字幕精品丝袜人妻| 日本精品美女在线观看| 亚洲自拍卡1卡2卡3卡4| 色婷婷亚洲综合网| 瑟瑟的视频在线免费观看| 亚洲中文字幕在线资源a| 久久真人黄色片免费观看| 亚洲ww在线观看| 亚洲午夜福利成人一区在线| 国产电视剧在线观看高清资源| 人妻少妇一区二区| 亚洲国产人成自精在线尤物| 99青青在线观看| 女人高潮久久久久久久视频| 久久国产精品亚洲精品99| 欧美午夜一区二区在线| 久久国产精品亚洲精品99| jvid一区二区三区| 亚洲伦理男人的天堂| 综合av国产精品| 国产午夜激情一区| 色哟哟丨小丨国产专区| 婷婷无套内套内射影院| 国内免费精品久久久久| 西门庆91蜜桃臀女神是谁| 亚洲精品网站天堂| 午夜精品一二三区| 青青草综合视频在线观看| 蜜桃精品视频观看| 国产另类在线视频| 九色91精品视频在线| 中文字幕精品丝袜人妻| 熟女中文字幕丝袜日韩| 亚洲精品久久久久久首页| 福利美女在线视频| www.中文字幕有码| 久久伊人国产超碰| 婷婷无套内套内射影院| 亚洲毛片av网站| 中国特黄一级黄色片| 丰满人妻中伦妇伦精品久久| 熟妇熟女乱综合在线| 欧美人妻中文字幕天天爽| 嘿咻视频在线观看了| 日韩欧美精品久久久久久久久| 日韩女优av电影一区二区| 欧美一区二区三区在线激情| 青青操视频在线免费播放| 亚洲欧美综合久久久久| 中文 日韩 人妻 丝袜| 日本六十路人妻熟女| 久久成人精品一区二区激情| 亚洲资源成人在线| 久久久99精品免费观看乱色| 丝袜美腿福利在线观看| 男生操女生的b在线观看| 出轨人妻少妇500视频| 吉林熟女啪啪哦哦叫| 日本99在线观看| 欧美jizzhd精品欧美24| 温琪少妇一区二区三区| 亚洲人妻视频免费| 精品高潮久久久久9999| 永久免费视频网站在线| 欧美 日韩 丝袜 偷拍| 日本女人被男人用力插骚逼的大 | 日本特黄夫妻生活片| 很黄很黄的床视频片段| 国产口爆一区二区三区露脸 | h动漫精品一区二区三区免费| 美女网站午夜麻豆一区| 欧美精选一区二区三区久久| 人妻熟女一区二区三区a| 国产精品欧美日韩| 污污亚洲国产黄色第一x| 亚洲蜜桃精品视频| 欧美熟妇日本熟女| 青青国产成人久久91网'| 日本久久久激情视频| 国产在线精品毛片| 怎样看黄色小视频| 亚洲日本一区二区三区久久久| 久久国产精品视频播放| 最新中文字幕免费在线视频| 87欧美福利在线视频| 日韩女优av电影一区二区| 欧美一级二级三级黄片| 看看免费的黄色性生活动作片| 国产久久精品福利| 人妻中文一区二区| 欧美性感比基尼视频| 精品一区二区三区四区免费视频| 日本高清高清高色| 亚洲免费黄色av网站| 日本特一级免费大片| julia京香中文字幕在线| 青青青小草青青在线播放视频| 青青青青青青青视频在线| 啪啪啪在线播放网站| 欧美国产精品久久久乱码| 欧美美女视频久久| 天天亲天天操天天射| 青青国产成人久久91网'| 91一区二区中文字幕| 大鸡巴强奸骚逼骚叫乱伦视频| 99国产精品99精品国产| 77777亚洲熟妇av在线| 同学人妻少妇系列| 亚洲国产麻豆一区| 久久青青视频网站| 天天操操操操操操操| 国产电视剧在线观看高清资源| 欧美午夜一区二区在线| 人妻性奴隶精品一区91| 男人午夜免费福利| 97超碰在线观看播放| 人人爽日日摸av| 色悠久久久久久久综合网| 中文字幕av久久爽一区二区| 欧美成人激情一级精品| ae老司机精品福利视频| 99久久无码国产孕妇精品| 黄色av亚洲黄色av| 国产未成女一区二区| 日本那个的视频网站| 亚洲最大成人在线观看不卡| av青青草三级在线观看| 卡通动漫400页亚洲片影音先| 国产尤物主播在线| 日韩视频一二三区| 国产亭亭91九色| 成人在线视频播放一区| 极品av黑丝美女插插插入| 成人 在线 视频| 欧美情色亚洲情色| 精品亚洲偷拍自拍| 真人一级毛片免费播放在| 美女把逼扒开让男人捅| 亚洲视频在线观看资源| 超碰97在线观看五月天| 天天日天天干婷婷| 国产av有码中文| 欧美日韩精品综合国产| 亚洲国产伊人久久| 亚洲激情人妻日韩欧美| 亚洲av国产精品久久一| 欧美午夜一级欧美精品| julia京香中文字幕在线| 最新av网址网站| 国产精品视频一区免费| 最近的中文字幕在线看| 欧美精品视频不卡| 国产尤物主播在线| 蜜臀av网站中文一区| av天堂资源最新版中文版| 亚洲欧美自拍第页| 成人精品免费在线视频| 欧美牲交a欧美在线欧美精品| 极品av黑丝美女插插插入| 卡通动漫400页亚洲片影音先| 穿黑丝女子跳舞的视频| 人妻丝袜高跟中出| 国产日韩精品欧美| 久久夜色精品国产亚洲AV动搜索| 太骚了就想被大鸡巴操视频| 亚洲av美国av产亚洲| 午夜精品久久久久久不卡av| 国产放荡av国产精品| 黑人无码AV黑人天堂无码AV| 91亚洲一区二区三区极品| 日本一区二区三区四区网址| 轮奸在线一区一区三区| 旗袍丝袜美腿美女图片| 很黄很黄的床视频片段| 日本不卡在线免费| 熟女sssxxx| 午夜精品久久成人| 亚洲av岛国搬运工| 国产精品高潮av大全| 午夜在线观看视频免费| 91av成人在线播放| 在线 视频 日韩| 亚洲丰满熟妇xxxx色| 久久免费精品国产2020| 91在线视频你懂| 美女嫩模福利在线| 大屁股骚逼操比视频软件| 91调教免费视频| 人妻一区二区三区18| 青青操视频在线免费播放| 免费精产国品一二三| 一道久dvd在线观看| 97精品资源在线观看| 精品毛片久久久久久久久久久久| 亚洲伊人久久中文字幕| 日本不卡一区二区高清视频 | 精品一区二区三区中文字幕老牛| 尤物av蜜臀av| 成年人午夜网站在线观看| 国产中文字幕2020| 在线av资源网站| 尤物av蜜臀av| 人妻中文一区二区| 亚洲精品国产欧美| 免费软件视频聊天| 国产精品jizz在线观看| 轮奸在线一区一区三区| 亚洲人妻一区二区三区视频| 国产一级精品特黄| 国产九色刺激露脸对白| 一区二区黄片视频| 亚洲国产人成自精在线尤物| 日韩女优av电影一区二区| 丰满美女高潮喷水| 精品久久久久久久久免费| 欧美午夜一级欧美精品| 亚洲欧美日韩综合人妻| 国产无遮挡裸体免费久久| 国产av忽忽那年校园事| 国产电视剧在线观看高清资源| 99九九久久久久精品| 初撮人妻一区二区三区| 变态女人的骚逼亚洲视频| 99国产免费自拍视频| 亚洲福利视频合集| 射精后第二天乏力| 美女被草在线网站| 午夜精品久久久久久久免费| 欧美激情五月网址| 欧美日韩丝袜美腿| 91超频在线观看视频| 国产欧美在线观看不卡一| 人人爽日日摸av| 在线视频国产免费观看| 日本1区视频在线| 亚洲国产精品卡一卡二| 美女视频美女视频网站| 国产啊啊在线播放| 人摸人人人澡人人超碰手机版 | 三级黄色大片试看| 成人国产高清av| 欧美一二三在线视频| 在线观看小视频亚洲| 加勒比一区二区在线观看| 亚洲一区二区三区四区在线观看| 亚洲美女骚货av| 欧洲日本亚洲在线视频| 人与禽动zoz0性伦a| 91亚洲一区二区三区极品| 穿黑丝女子跳舞的视频| 免费永久av网站| 爆操熟女视频在线观看| 欧美精选一区二区三区久久| 免费软件视频聊天| 亚洲乱码一区二区视频| 激情婷婷中文字幕| 大学生免费一级av一片| 国产精品中文字幕av| 三级黄色大片试看| 午夜国产亚洲精品| 在线国产激情视频观看| 清纯唯美亚洲另类| 国产在线观看你懂| 日本中文字幕福利视频| 欧美一区二区免费在线观看| 亚洲精品成a在线观看| 97超碰在线观看播放| 国产精品欧美日韩| 大鸡巴强奸骚逼骚叫乱伦视频| 午夜精品久久久久久不卡av| 亚洲av综合伊人| 97超pen在线视频人妻| 欧美a级视频一区二区三区| 国产人久久久伊人av| 亚洲熟女综合色一区二区三区| 成人看刺激性高潮毛片| 香港一级特黄大片| 99视频精品免费播放| 九色porny人妻91| 黑人大鸡巴专操华人美女淫穴视频| 素人 国产 麻豆 极品| 蜜臀av在线一区二区三区| 亚洲av在线观看免费| 91福利免费观看网站| 日韩情色中文字幕| 中文字幕亚洲国产精品| 91在线视频你懂| 日本不卡在线免费| 91久爽久色在线观看| 日本熟妇丰满久久久久久| 特粗特长大黑掉猛操逼视频| 熟女人妻在线视频观看| 在线观看小视频亚洲| 美女第一直播平台| 亚州综合一区二区三区| 成人国产高清av| 超碰狠狠干狠狠操| 96久久久久国产精品| 人妻久久搭讪中出电影| 国产精品欧美一级免费| 亚洲av激情av日韩av| 91福利国产福利| 亚洲天天狠狠操夜夜狠狠操| 97免费视频资源总站| 全国亚洲最大色图视频网| 熟女人妻三十路四十路人妻斩| 欧美亚洲另类网址在线| 狂野少女免费完整版中文| 视频一区二区三区久久| 亚洲精品女久久久久| 天美传媒有限公司官网首页 | 四虎884aa成人精品最新| 日韩亚洲av专区| 久草中文av在线| 91久久视频在线播放| 亚洲精品视频自拍成人| 中文 日韩 人妻 丝袜| 六月丁香激情综合啪啪| 刺激性欧美一区二区三区| 欧美精品在线看片一区二区 | 大香蕉伊人av网| 亚洲精品在线观看aa| 日韩精品久久一区二区三区人妻| 瑟瑟的视频在线免费观看| 国产诱惑在线视频播放| 重口另类喷水高潮| 欧美一区二区中文在线观看| 国产经典亚洲天堂| 久久精品av成人| 国产AV又粗又大果冻传媒| 男人天堂网站亚洲| 卡通动漫400页亚洲片影音先| 国产精品自拍偷拍中文字幕| 伊人一区二区三区四区五区| 最新地址亚洲天堂| 女人av一区二区三区| 国产精品久久a|| 18中文字幕在线| 亚洲一区二区三区四区美女| 好了AV四色综合无码久久| 超碰97在线观看五月天| 偷拍激情文学欧美| 成人h网站秘在线观看| 99青青在线观看| 98超级在线免费视频| 999久久久国产精品免费| 人妻精品午夜一区二区| 国产初次破初视频| 九九热在线观看视频99| 人妻少妇一区二区| 96久久久久国产精品| 中国少妇日本少妇| 亚洲伊人久久中文字幕| 九九只有精品视频| 三级日本一区二区三区| www在线观看视频污| 国内免费精品久久久久| 99青青在线观看| 国产精品资源自拍| 婷婷久久视频在线播放| 亚洲精品视频国产精品视频| 亚洲处女破处流血视频在线观看| 午夜在线观看视频免费| 91尤物在线一区二区三区| 亚洲人妻一区二区91九色| 久久久乱码精品一区二区三区| 免费av网站中文| 千人斩av一二三区亚洲| 久久免费精品国产72精品剧情| 亚州综合一区二区三区| 2026www中文字幕| 视频一区视频二区视频三区四区| 日韩中文高清在线| 中文字幕久久六月色综合| 欧美手机在线不卡视频| 日本不卡在线免费| 三级伦理一区二区三区| 亚洲第一区2区3区在线观看| 欧美国产视频自拍| 120分钟激情视频| 91福利免费观看网站| 日韩视频一二三区| 人妻性奴隶精品一区91| 欧美国产精品嫩嫩的| 亚洲精品在线观看aa| 国语版三级黄色片| 国产chinese男男激情| 欧美色b网一人在线| 亚洲视频一区在线观看不卡| 偷拍激情文学欧美| 亚洲欧美最大色精品网站免费观看| av在线 中文字幕 丝袜| 99热网址在线观看一区| 免费看片网址一区二区三区| 麻豆精品国产传媒av绿帽社| 在线观看av裸体| 成人网片在线播放| 永久免费视频网站在线| 一区二区黄片视频| 成人精品视频视频| 国产九色刺激露脸对白| 成人精品自拍视频免费看| 在线欧美亚洲一区| 亚洲av国产av麻豆| 国产精品资源自拍| 青青草原在线精品视频免费| 精品av永久在线 | 亚洲欧美美乳在线| 120分钟激情视频| 国产午夜在线一区二区三区| 丰满人妻中伦妇伦精品久久| 日韩人妻三区视频| 超碰免费在线国产| 永久成人在线视频| 久久精品国产av成人| 91污污污在线观看下载| 粉嫩高清一区二区三区| 丰满美女高潮喷水| 亚洲中文字幕在线资源a| 日本aⅴ毛片成人| 自拍偷拍日韩国产| 美女视频美女视频网站| 日本一区视频二区| 国产精品高潮呻吟av92| 成人精品免费在线视频| 三级视频无码在线观看| 在线精品国自产拍| 成人国产高清av| 夜夜操夜夜摸视频| 三级日本一区二区三区| 欧美国产精品嫩嫩的| 免费欧洲毛片a级视频无风险| 99久久亚洲精品日本无| 中文字幕人妻丝袜久久| 成人午夜电影中文字幕| 青青操视频在线免费播放| 黑屌操欧极品小嫩逼| 扒开女子下面让男人桶的视频| 毛片av在线网址| 国产一区熟女在线视频| 高潮喷水少妇av| 国产不卡伦理视频| 都市猎艳激情小说| 中文字幕中文字幕在线| 91调教免费视频| 79久久久久久久69| 亚洲欧美最大色精品网站免费观看| av网址在线中文字幕| 午夜影院在线观看黄| 麻豆亚洲一区麻豆| 国产免费在线视频播放| 欧美精品在线看片一区二区 | 旗袍丝袜美腿美女图片| 午夜精品久久久久久久99十八禁| 亚洲欧美最大色精品网站免费观看| 亚洲欧美自拍第页| 自拍视频在线观看1久网| 任我看视频在线观看| 色哟哟国产精品一区二区自拍| 国产诱惑在线视频播放| julia京香中文字幕在线| 亚洲中文久久久久久精品| 久久成人三级一区二区三区| 熟妇熟女乱综合在线| 久久综合金8天国| 日本人体艺术在线| 久久久午夜福利专区| 亚洲熟女综合色一区二区三区| 欧美日韩伦理三级av| 国产不卡的av网站在线观看| 人妻熟女一区二区三区a| 国产日产一区二区三区久久久久久| 亚洲精品综合人妻av| 国产无套激情视频| 一区二区三区免费黄片| 在线观看日韩论理| av天堂亚洲首页| 久久久噜呀噜噜久久免| 精品人妻在线不人妻| 黑人大鸡巴专操华人美女淫穴视频| 午夜精品人妻一区二区| 成人 在线 视频| 四虎884aa成人精品最新| 老熟女五十路乱子中出交尾一区| 国产偷拍自拍合集| 别插了受不了快拔出来视频| yellow中文字幕网91在线 | 亚洲天堂欧美另类| 美女网站午夜麻豆一区| 人妻性奴隶精品一区91| 麻豆国产精彩对白| 在线麻豆黄色观看| 日本不卡在线免费| 成人小视频免费在线观看| 日本中文字幕福利视频| 亚洲乱码一区二区视频| 日本一区视频二区| 亚洲另类丝袜美女| 青青草综合视频在线观看| 嫩草影院在线观看?成人版| 美女直播被艹视频| 成人精品免费观看| 亚洲av在线观看在线观看 | 国产三级视频在线播放| 国产未成女一区二区| 人妻久久搭讪中出电影| 熟妇熟女乱综合在线| 全国亚洲最大色图视频网| 大学生免费一级av一片| 中文字幕亚洲国产精品| 尤物av蜜臀av| 人摸人人人澡人人超碰手机版| 自拍偷拍亚洲精品| 麻豆精品国产传媒av绿帽社| 这里只有精品视频这里| 精品视频一区二区二区三区| 三级黄色大片试看| 亚洲男女一区二区三区| 国产中文字幕在线播放| 欧美 亚洲 丝袜另类| 激情小说人妻欧美| 日本一区二区精品在线| julia京香中文字幕在线| 久久观看视频在线| 人妻久久精品夜夜爽一区二区| 可以在线免费直接看的av| 男女插插视频推荐| bbbb在线免费av| 精品一区二区三区中文字幕老牛 | 最新日本一区二区三区| 欧美日本高清视频99| 国产综合在线视频免费看| 人妻中文一区二区| 欧美黑人精品在线免费观看视频| 120分钟激情视频| 黑色丝袜美美女被狂躁av| 国产综合在线视频免费看| 欧美 亚洲 丝袜另类| 精品视频一区二区二区三区| 美女直播三级视频| 国产超级va在线观看视频| 人妻熟妇免费视频| 青青国产成人久久91网'| 真人一级毛片免费播放在| 日本一区二区三区人妻| 三级视频无码在线观看| 日本那个的视频网站| 青青操视频在线免费播放| 午夜精品人妻一区二区| 国产三级内射在线| 无套后入蜜桃屁股在线观看| 久久久久9999精品99久久| 国产放荡av国产精品| 熟女人妻三十路四十路人妻斩| 国产初次破初视频| 国产美女在线观看免费观看| 亚洲蜜桃免费在线| av天堂成人毛逼| 婷婷午夜精品久久久久久久久久| 日本1区视频在线| 日韩情色中文字幕| 成人午夜亚洲av| 日韩国产精品专区一区性色| 欧美牲交a欧美在线欧美精品| 青青草免费海量在线观看| 免费永久av网站| 成人精品免费观看| 日本特一级免费大片| 亚洲国产高清国产| 国产自拍视频免费播放| 三级三级久久三级三级| 九色91精品视频在线| 黄色十大禁止软件| 麻豆国产精彩对白| 中文有码视频在线免费观看| 青青草av在线观看入口| 欧美精品在线看片一区二区| 国语版三级黄色片| 亚洲精品免费日韩| 自拍偷拍在线欧美| 免费在线观看的av毛片的网站| 美女视频一区二区在线观看| 国产精品自拍偷拍中文字幕| 一区二区三区精品在线| 熟女人妻在线视频观看| 九九99久久 com| 国产放荡av国产精品| 亚洲日本一区二区三区久久久| 国产经典亚洲天堂| 青青草官网视频在线观看| 欧美激情在线网站亚洲一区| 精品视频国产激情| 美女网站午夜麻豆一区| 视频一区视频二区视频三区四区| 欧美在线不卡视频| 在线播放日韩一区| 91尤物在线一区二区三区| 人妻熟妇免费视频| 97碰人妻免费观看视频| 美女av性感视频| 亚洲最新黄色av网站| 成人在线视频播放一区| 欧美黑人精品在线免费观看视频| 亚洲av国产av麻豆| 永久免费视频网站在线| 亚洲精品在线观看aa| 亚洲欧美另类卡通| 老司机99精品视频在线观看| 欧美精品一区二区久久丝袜| 黑屌操欧极品小嫩逼| 亚洲福利视频合集| 日本邪恶福利网站在线观看| 超碰在线97中文| 欧洲亚洲自拍偷拍| 成人看刺激性高潮毛片| 久久国产精品亚洲精品99| 一区二区三区中文字幕在线| 日韩中文高清在线| 元码中文字幕一区二区| 超碰97在线观看五月天| 午夜精品一二三区| 夫上司人妻秘书OL中文有码| 亚洲视频一区自拍| 日本99在线观看| 激情小说人妻欧美| 99青青在线观看| 国产又猛又粗又硬又黄视频| 久草中文av在线| 麻豆在线精品视频| 在线视频成人一区二区| 欧美日本精品免费观看| 美女直播被艹视频| 亚洲熟女综合色区一区二区三区| 亚洲国产成人精品vvvvv| 中文字幕在线观看视频中文| 太骚了就想被大鸡巴操视频| 国产精品自拍偷拍中文字幕| 五十路昭和熟女人妻一区二区| 国产九色刺激露脸对白| 自拍偷拍在线欧美| 大乳奶一级淫片aaa片挤奶| 日韩亚洲av专区| 免费a级黄色av网站| 天堂av在线成人免费| 99九九久久久久精品| 老鸭窝在线观看免费视频| 成人精品视频视频| 想要视频在线观看| 伊人久久中文字幕综合观看|